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SUMMARY

A new finite difference method for the discretization of the incompressible Navier–Stokes equations is
presented. The scheme is constructed on a staggered-mesh grid system. The convection terms are
discretized with a fifth-order-accurate upwind compact difference approximation, the viscous terms are
discretized with a sixth-order symmetrical compact difference approximation, the continuity equation and
the pressure gradient in the momentum equations are discretized with a fourth-order difference
approximation on a cell-centered mesh. Time advancement uses a three-stage Runge–Kutta method. The
Poisson equation for computing the pressure is solved with preconditioning. Accuracy analysis shows
that the new method has high resolving efficiency. Validation of the method by computation of Taylor’s
vortex array is presented. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Recently, people have been paying more attention to numerical simulation of complex flow
fields with multi-scale structures. A turbulent fluid flow is a common example. There is a need
to perform direct numerical simulation instead of solving the averaged Navier–Stokes equa-
tions. Computational algorithms developed in the past were mainly designed for solving large
scale fluid dynamics problems. For simulating the complex flow fields with multi-scale
structures, a high resolution method is needed. There are two ways to improve the resolution
of the method. One of them is to construct a high-order-accurate scheme, and another is to
refine the grid mesh. With lower accuracy schemes (e.g. second-order schemes), it is difficult to
capture small scale structures in a complex flow field like turbulence because of limitation of
computer resources. Hence high-order-accurate computational methods are both desirable and
preferred. In early studies spectral methods were used to directly simulate the turbulent flows
[1–3]. Because of their flexibility and common use, finite difference methods have also recently
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been used to solve the complex flow fields with multi-scale structures. Rai and Moin [4] present
simulation of an incompressible turbulent channel flow using a fifth-order-accurate upwind-bi-
ased difference scheme. In Reference [5], symmetrical compact difference schemes are devel-
oped, and they are used to solve compressible mixing layers. In References [6,7], upwind
compact difference schemes and a super compact finite difference method (SCFDM) are
developed. With high-order-accurate schemes, the range of wavenumbers with accurate
simulation can be enlarged. The smaller structures of fluid flow can be captured well with
high-order schemes.

One of the main problems of turbulence simulation is to ensure that the effects of turbulent
diffusion are not masked by numerical diffusion. For dominance of physical diffusion, the
mesh Reynolds number, ReDx, must be restricted. In Reference [6], it was shown that for
high-order-accurate schemes, the restriction on ReDx can be relaxed.

Another important problem of turbulent simulation is to ensure that the phase speed of flow
structures with different scales can be well-approximated. Otherwise the computed coherent
structures will not be physical [8]. The commonly used second-order central schemes with a
limited number of grid points cannot give correct phase speed for the structures with small
scales. With higher-order-accurate schemes, the situation can be much improved.

Within the high-order-accurate schemes with the same order of accuracy, the compact and
upwind compact schemes have higher resolving efficiency than the traditional schemes [5,6],
and the more complicated SCFDM has higher resolving efficiency than the compact schemes.
In the present paper, the upwind compact scheme developed in Reference [6] is used to
discretize the incompressible Navier–Stokes equations. The system of equations is discretized
on a staggered mesh grid system. The fifth-order upwind compact difference approximation is
used to discretize the convection terms in the momentum equations, and the viscous terms are
discretized with a sixth-order symmetrical compact difference approximation. The derivatives
in the continuity equation and the pressure gradient in the momentum equations are dis-
cretized with fourth-order accuracy on a cell-centered mesh. For advancing time a three-stage
Runge–Kutta method with third-order accuracy is used [9]. The pressure is solved from the
discretized Poisson equation, which is obtained by putting the discretized momentum equa-
tions into the discretized continuity equation. For solving the obtained pressure equation,
preconditioning is used [10].

With the new developed scheme, the smaller structures in the complex flow fields can be
well-captured. Compared with the fifth-order upwind-biased schemes in [4], the new method
has less numerical dissipation in the wide range of wavenumbers, and larger numerical
dissipation in the range with very high wavenumbers. The numerical dissipation with very high
wavenumbers is useful for suppressing non-physical oscillations. In this paper, the discretiza-
tion method for solving the incompressible Navier–Stokes equations is presented first, and
then the accuracy of the scheme is analyzed. In Section 6, examples are given.

2. GOVERNING EQUATIONS

For two-dimensional flows, the governing equations describing incompressible flow in Carte-
sian co-ordinates in dimensionless form are

Continuity equation

(u
(x

+
(6

(y
=0. (2.1)
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Momentum equation in the horizontal direction
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Momentum equation in the 6ertical direction
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In these equations, the characteristic length is L, the characteristic velocity is U0, and the
characteristic time is L/U0. The dimensionless pressure is p= p̄/(rU0

2) in which r is the density
(constant), and p̄ is the dimensional pressure. In the momentum equations, the parameter
Re=U0L/g is the Reynolds number in which g is the kinematic viscosity of the fluid.

The difficulty of solving the system of (2.1)–(2.3) is that the flow parameters are not in
evolutionary form. The velocity components u and 6 in the numerical solution of the
momentum equations at each time step must satisfy the discretized continuity equation. For
the easy design of the solution algorithm, defining
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F= [ f, g ]T, U= [u, 6 ]T

the following system of equations is obtained

D(U)=0, (2.8)

(U
(t

=L(U). (2.9)

3. DIFFERENCE APPROXIMATION

The staggered grid point system is given in Figure 1. The first momentum equation is written
at the point (i+1

2, j ), the second momentum equation is written at the point (i, j+1
2), and the

pressure is given at point (i, j ). The continuity equation is approximated at the point (i, j ). The
convection terms in the momentum equations are discretized with a fifth-order-accurate
upwind compact difference approximation [6]. For example, the term u((u/(x) is split as
follows

u
(u
(x

=u+ (u
(x

+u− (u
(x

, u+ +u− =u, u+]0, u−50.

The term u+((u/(x) is approximated at point (i+1
2, j ) by ui+1/2

+ Fi+1/2
+ /Dx and

3
5

Fi+1/2
+ +

2
5

Fi−1/2
+ =

1
60

dx
−[−ui+5/2+11ui+3/2+47ui+1/2+3ui−1/2]; (3.1)
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the term u−((u/(x) at point (i+1
2, j ) is approximated with ui+1/2

− Fi+1/2
− /Dx and

3
5

Fi+1/2
− +

2
5

Fi+3/2
− =

1
60

dx
+[3ui+3/2+47ui+1/2+11ui−1/2−ui−3/2], (3.2)

where dx
9ui=� (ui−ui91). Here u9 and F9 are defined at points (i+1

2, j ). Equations (3.1)
and (3.2) can be solved easily. In the same way, difference approximations can be constructed
for other convection terms in the momentum equations. The viscous terms are approximated
with a sixth-order symmetric compact difference relation [5]. For example, the term (2u/(x2 is
approximated with Si+1/2/Dx2 and

2
15

Si+3/2+
11
15

Si+1/2+
2

15
Si−1/2=

4
5

dx
2ui+1/2+

1
20

[ui+5/2−2ui+1/2+ui−3/2], (3.3)

where the difference operator dx
2 =dx

+dx
−. To obtain Si+1/2, a linear system of equations with

a tri-diagonal matrix has to be solved.
The derivatives of pressure in the momentum equations are discretized with a fourth-order

difference approximation on a cell-centered mesh. For example, at the point (i+1
2, j ), one has

dxpi+1/2=Dx
(p
(x

=
1

24
[27(pi+1−pi)− (pi+2−pi−1)]. (3.4)

The discretized continuity equation is expressed as follows

Dh(U)=
dxui

Dx
+

dy6j
Dy

, (3.5)

dxui= [27(ui+1/2−ui−1/2)− (ui+3/2−ui−3/2)]/(24Dx), (3.6)

dx6j= [27(6j+1/2−6j−1/2)− (6j+3/2−6j−3/2)]/(24Dy). (3.7)

A brief derivation of Equations (3.1)–(3.7) is given in Appendix A. The method for
obtaining pressure will be presented in the next section. In the discretization of pressure
gradient and continuity equation, an approximation with reduced formal accuracy is used.
This is for the easy solving of the Poisson equation for the pressure. It will be shown in Section
5 that the resolving efficiency of the fourth-order approximation on the cell-centered mesh is
almost the same as that for the sixth-order approximation over a wide range of wavenumbers.

Figure 1. Staggered grid system.
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Figure 2. Variation of the modified wavenumbers ki vs. alpha.

In the difference equation for the first momentum equation, the value of the velocity
component 6, which is defined at point (i, j+1

2), needs to be computed at the point (i+1
2, j ).

In the present paper, 6i+1/2, j is obtained from a sixth-order-accurate midpoint interpolation
developed in [5]. In the same way, ui, j+1/2 can be computed for the second momentum
equation.

Suppose all derivatives in (2.8) and (2.9) are discretized. After that, the following semi-dis-
cretized approximation for (2.9) is obtained

dU
dt

=Lh(U). (3.8)

A three-stage Runge–Kutta (R–K) method with third-order accuracy [9] is used to
discretize the resulting ordinary differential equations

U (1)=a1Un+b1DtLh(Un), (3.9)

U (2)=a2Un+b2[U (1)+DtLh(U (1))], (3.10)

Un+1=a3U
n+b3[U (2)+DtLh(U (2))], (3.11)

where a1=1, a2=3/4, a3=1/3, b1=1, b2=1/4 and b3=2/3.

Table I. Comparison of resolving efficiency

o
0.010 0.005e1 0.100 0.050 0.001

Scheme

0.61 0.39 0.33Cell-centered 0.220.74
0.20 0.13Fourth-order 0.44 0.37 0.24

0.47 0.35 0.31Sixth-order 0.230.54
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Figure 3. Vorticity contours for the Taylor’s vortex at t=2.

4. SOLUTION OF PRESSURE EQUATION

At each step of the R–K method, a Poisson equation for pressure is solved. As a sample
solution algorithm, consider the first step of the R–K method. Applying the difference
operator Dh to Equation (3.9) with discretized f, g, (p/(x and (p/(y in (2.5)–(2.7), you obtain

Dh [U (1)]=a1Dh [U (n)]+b1Dh [F ]−b1Dh [Gh(p)], (4.1)

Figure 4. Velocity component u at J=16 for N=1, 2, 4 and Re=100.
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Figure 5. Decay of kinetic energy vs. time for N=1, 2, 4 and Re=10.

where Gh is the difference approximation of the pressure gradient. As is done for the
commonly used second-order projection method for the incompressible Navier–Stokes equa-
tions, suppose Dh [U (1)]=0. With this assumption, the following discretized Poisson equation
for pressure is obtained from (4.1)

b1
�dx(dxp)

Dx2 +
dy(dyp)

Dy2

n
=a1Dh(U (1))+b1Dh [F ], (4.2)

where

dx(dxp)=
1

(24)2 [(pi+3+pi−3)−54(pi+2+pi−2)+783(pi+1+pi−1)−1460pi ], (4.3)

dy(dyp)=
1

(24)2 [(pj+3+pj−3)−54(pj+2+pj−2)+783(pj+1+pj−1)−1460pj ]. (4.4)

The right-hand-side of Equation (4.2) is known. With periodic boundary conditions in both
the x- and y-directions, one has a linear system of equations for the pressure with a cyclic
block hepta-diagonal matrix. The corresponding matrix is denoted A. The obtained linear
system of equations with unknown vector P for pressure can be written as

AP=H, (4.5)

where H is a known vector. The preconditioned system is

AM−1Z=H, (4.6)

where

Z=MP. (4.7)

First the system (4.6) needs to be solved, and then with Z obtained from (4.6), the solution
P is obtained from (4.7). In the present paper, a SSOR preconditioner [10] is used. The
precondition matrix M is defined as
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M= (D−vE)D−1(D−vG), (4.8)

where v is a relaxation parameter, D is a diagonal matrix consisting of the diagonal elements
of matrix A, −E is the strict lower part of A, and −G is the strict upper part of A.

The solution process is now briefly outlined. Suppose un, 6n an pn are known. The process
of the solution is as follows

1. Step 1 of Runge–Kutta method
(a) with fifth-order upwind compact difference operators, discretize the convection terms

of the Navier–Stokes equations, and with sixth-order symmetric compact difference
operator, discretize the viscous terms of equations;

(b) with difference operator Dh(U) in (3.5), calculate the right-hand-side of (4.2);

Figure 6. Vorticity contours for 64×64. A: t=4, B: t=6, C: t=8, D: t=10.
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Figure 7. Vorticity contours for 128×128. A: t=4, B: t=6, C: t=8, D: t=10.

(c) solve the Poisson equation (4.2) for obtaining the pressure vector p (1) with the
preconditioned method (4.6) and (4.7);

(d) with obtained p (1) and discretization (4.3) and (4.4), compute U (1) in (3.9);
2. Step 2 of Runge–Kutta method: Repeat (a)–(c) in Step 1 with U (1) obtained in Step 1

instead of U (n) to compute f(U (1)), g(U (1)) and P (2), and then compute U (2) from (3.10);
3. Step 3 of Runge–Kutta method: Repeat (a)–(c) in Step 1 with U (2) obtained in Step 2

instead of U (1) to compute f(U (2)), g(U (2)) and pn+1, and then compute Un+1 from (3.11).
4. Repeat process 1–3.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 509–521 (1999)
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5. ACCURACY ANALYSIS

It was shown is [5,6] that compact schemes and upwind compact schemes have higher resolving
efficiency than traditional schemes. Compared with traditional fifth-order upwind-biased
scheme, the fifth-order upwind compact scheme has less dissipation over a wider range of
wavenumbers and larger dissipation at very high wavenumbers [6]. Less dissipation provides
dominance of physical dissipation over a wider range of wavenumbers. Larger numerical
dissipation at very high wavenumbers is useful for suppressing potential numerical oscillations.
Reduced formal accuracy was used in the approximation of the pressure gradient and the
continuity equation. In this section, it is shown that the adopted fourth-order difference
approximation on a cell-centered mesh has almost the same resolving efficiency over a wide
range of wavenumbers as the sixth-order traditional difference approximation. Consider the
following three difference approximations:

Traditional fourth-order approximation

Fj=
1
12

[8(uj+1−uj−1)− (uj+2−uj−2)]. (5.1)

Traditional sixth-order approximation

Fj=
1
60

[45(uj+1−uj−1)−9(uj+2−uj−2)+ (uj+3−uj−3)]. (5.2)

Fourth-order approximation on a cell-centered mesh

Fj=
1
24

[27(uj+1/2−uj−1/2)− (uj+3/2−uj−3/2)]. (5.3)

The corresponding modified wavenumbers are given in Figure 2. The range of well-resolved
wavenumbers may be defined by the error tolerance [5])ki(a)−a

a

)
Bo, (5.4)

where ki(a) is the modified wavenumber. Suppose af is the shortest well-resolved wavenumber.
The fraction e1=af/p may be regarded as a measure of the resolving efficiency of a scheme.
From Figure 2, it can be seen that the fourth-order approximation on the cell-centered mesh
can also give good resolving efficiency. With different error tolerance, the comparison of the
resolving efficiency for approximation (5.1)–(5.3) is given in Table I. From the table, it can be
seen that the fourth-order difference approximation on the cell-centered mesh has almost the
same resolving efficiency as the sixth-order approximation over a wide range of wavenumbers.

6. NUMERICAL EXAMPLES

Example 1. Taylor in 1923 published a exact solution of the incompressible Navier–Stokes
equations in terms of the streamfunction and vorticity [11]. In the present paper, the initial
condition is taken as [12]

u(x, y, 0)= −cos(Nx) sin(Ny),
6(x, y, 0)=sin(Nx) cos(Ny),
05x52p, 05y52p.

(6.1)

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 509–521 (1999)
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The exact solution for the this case is known:

u(x, y, t)= −cos(Nx) sin(Ny) exp[−2N2t/Re ],
6(x, y, t)=sin(Nx) cos(Ny) exp[−2N2t/Re ],

(6.2)

where N is a integer. The computed Taylor’s array of vortices for Dx=Dy=2p/64, Re=100
and N=2 at t=2 is given in Figure 3. The variation of velocity component u with x at y=p/2
for N=1, 2, 4 is given in Figure 4. The difference between the exact solution and predicted
solution from the simulation for the case using a coarse mesh grid, Dx=Dy=2p/16, Re=100
at t=2, is within a maximum difference of 10−3. Comparison of the computationally
predicted decay of kinetic energy with that of the exact solution is given in Figure 5 for the
case Re=10, N=1, 2, 4.

Example 2. This is a double layer taken from [13].

u(x, y, 0)=
!tanh[(y−p/2)/r ],

tanh[(3p/2−y)/r ],
y5p

y\p
(6.3)

6(x, y, 0)=d sin(x), (6.4)

where r=p/15, d=0.05, Re=104. The incompressible Navier–Stokes equations with peri-
odic boundary conditions are used. The grid system used in the computation includes
IN×JN=64×64 and 128×128. The results at different times are given in Figures 6 and 7.
The purpose of this computation is to test the efficiency of method to solve a problem with a
steep gradient in the solution.
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APPENDIX A

This appendix presents a brief derivation of the upwind compact difference approximation.
Consider the following model equation and its semi-discrete approximation

(u
(t

+c
(u
(x

=0, c=constant, (A1)

(uj

(t
+c

Fj

Dx
=0, (A2)

where Fj/Dx is an approximation of the first derivative (u/(x, and Fj is obtained from the
following difference equation

a0Fj+1+b0Fj+g0Fj−1=a(uj+2−uj+1)+b(uj+1−uj)+c(uj−uj−1)+d(uj−1−uj−2),
(A3)

with the requirement

a0+b0+g0=1.
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The relations between the coefficients a0, b0, g0, a, b, c and d are derived by matching the
Taylor series coefficients of various orders. The first unmatched coefficient divided by Dx
determines the formal truncation error. The constraints are

a0+b0+g0=1, a+b+c+d=1,

a0−g0= (3a+b−c−3d)/2,a0+g0= (7a+b+c+7d)/3,

a0−g0= (15a+b−c−15d)/4,a0+g0= (31a+b+c+31d)/5.

(A4)

There are seven unknowns with six equations. The following relations with one free parameter
can be obtained from (A4)

b0=3/5, a=a0/6−1/60, c= −3/2a0+47/60, g0=2/5−a0,

b=3a0/2+11/60, d= −a0/6+1/20. (A5)

With the initial condition

u(x, 0)=exp(ikx) (A6)

(A1) has an exact solution

u(x, 0)=exp[ik(x−ct)]. (A7)

With the same initial condition (A6), one can obtain the solution of (A2)

u(xj, t)=exp
�

−
kr

Dx
ct
n

exp
�

ik
�

xj−c
ki

a
t
�n

, (A8)

where 05a=kDx5p,

ki(a)=
BC−AD
C2+D2 , kr(a)=

AC+BD
C2+D2 , (A9)

A=5(a0−0.2)[cos(2a)+8 cos(a)−9],

B= [sin(2a)+28 sin(a)]/6,

C=3+2 cos(a),

D=10(a0−0.2) sin(a).

With a0=0.2, we have kr(a)=0, and (A3) is the sixth-order-accurate symmetrical compact
difference approximation. Suppose c\0 in (A1). kr(a) with a0B0.2 is positive, and the
scheme (A2) is dissipative (see (A8)). The following simplest fifth-order dissipative (or upwind)
compact approximation can be obtained if a0=0 is taken

3
5

Fj+
2
5

Fj−1=
1

60
dx

−[−uj+2+11uj+1+47uj+3uj−1]. (A10)

Equation (A10) can be solved easily with increasing the index j. The difference relations
(3.2)–(3.4), (3.6) and (3.7) can be obtained in the same way.
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